Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            As blue intensity (BI) methods are increasingly employed to generate temperature-sensitive tree-ring records around the globe, the influence of intra-site variation in elevation on climate-growth relationships for BI parameters remains largely unresolved. Here, we develop six latewood blue intensity (LWBI) chronologies along an elevational gradient for two montane conifer species, Abies concolor var. concolor (Gordon & Glend.) Lindl. Ex Hilderb and Picea engelmannii Parry ex Engelm., growing in the arid southwestern United States. In this first documented study to examine the climate response of LWBI from A. concolor, we find positive, significant (p < 0.05) correlations between the LWBI chronology from the highest elevation plot and spring–summer temperatures (April–August, r > 0.46). Moreover, the positive temperature response of A. concolor is generally stronger and more temporally stable than for P. engelmannii across varying seasonal windows. In comparing the differences in climate response across species and elevation, we document distinct clinal relationships between the temperature response of LWBI for A. concolor, where both the strength and temporal stability of the positive temperature signal increases with elevation. Meanwhile, the mid-elevation P. engelmannii demonstrate the highest climate sensitivity. As such, our findings contribute to a more comprehensive understanding of how elevation influences the type and strength of the climatic information embedded within the LWBI parameter from arid, montane conifers growing near their historical range margins.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperature limits the potential to identify these events in the past and to place them in a long-term context. We develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing hydroclimate reconstructions reveals an increasing association between maximum temperature and drought severity in recent decades, relative to the past five centuries. The synthesis of these paleo-reconstructions indicates that the amplification of the modern WNA megadrought by increased temperatures and the frequency and spatial extent of compound hot and dry conditions in the 21st century are likely unprecedented since at least the 16th century.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
